Uno de los conceptos fundamentales para el álgebra en matemáticas son las matrices. En primer lugar veamos que es y de que se compone.
Definición de matriz . ¿ Que es una matriz ?
Se conoce conoce matriz de dimensión m\times n a un conjunto de numero reales dispuesto en m filas y n columnas de la siguiente forma:
Dimensión ¿ Que es la dimensión de las matrices ?
La dimensión es el numero de filas y de columnas que posee y se escribe de la siguiente forma:
m\times n
Elementos de las matrices
Los elementos de una matriz son los números por los que esta formada. Se denotan como: a_{ij} elemento de la matriz que ocupa la fila i y la columna j
Diagonal principal
La diagonal principal es aquella que esta formada por los elementos a_{ii}
Diagonal secundaria
La diagonal secundaria es aquella que esta formada por los elementos a_{ii} tales que i+j=n+1
10 Ejemplos de matrices
Matriz 1×1
Formada por una fila y una columna, es decir, un único numero
2
Matriz 2×2
Se compone de dos filas y dos columnas
\begin{pmatrix}1&2\\ 3&2\end{pmatrix}
Matriz 2×1
Se compone de dos filas y una columna
\begin{pmatrix}1\\ 0\end{pmatrix}
Matriz 1×2
Se compone de una fila y dos columnas
\begin{pmatrix}3&1\end{pmatrix}
Matriz 3×3
Compuesta por tres filas y tres columnas
\begin{pmatrix}4&0&2\\ 0&1&2\\ 1&2&1\end{pmatrix}
Matriz 3×2
Compuesta por tres filas y dos columnas
\begin{pmatrix}2&1\\ 1&1\\ 3&0\end{pmatrix}
Matriz 3×4
Compuesta por tres filas y cuatro columnas
\begin{pmatrix}1&2&0&4\\ 1&1&1&0\\ 4&2&3&0\end{pmatrix}
Matriz 4×4
Formada por cuatro columnas y cuatro filas
\begin{pmatrix}1&2&2&3\\ 1&3&4&4\\ 0&4&1&5\\ 12&0&2&1\end{pmatrix}
Matriz 10×10
Se compone de diez filas y diez columnas
1o Ejercicios de matrices resueltos
Indica la dimensión de las siguientes matrices
- \begin{pmatrix}1&6&2&3\\21&3&4&4\\ 0&4&1&5\\ 2&0&2&1\end{pmatrix}
- \begin{pmatrix}1&2&2\\ 0&1&2\\ 1&2&1\end{pmatrix}
- \begin{pmatrix}4&1\end{pmatrix}
Una vez visto el concepto de matriz, pasamos a ver los tipos de matrices.